Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2941, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580643

RESUMO

Programmed DNA double-strand break (DSB) formation is a crucial feature of meiosis in most organisms. DSBs initiate recombination-mediated linking of homologous chromosomes, which enables correct chromosome segregation in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We uncover in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms. Both IHO1 phosphorylation and formation of axial IHO1 platforms are diminished by chemical inhibition of DBF4-dependent kinase (DDK), suggesting that DDK contributes to the control of the axial DSB-machinery. Furthermore, we show that axial IHO1 platforms are based on an interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.


Assuntos
Proteínas de Ciclo Celular , Quebras de DNA de Cadeia Dupla , Camundongos , Animais , Proteínas de Ciclo Celular/metabolismo , DNA , Meiose/genética , Complexo Sinaptonêmico/metabolismo , Recombinação Genética , Recombinação Homóloga
2.
bioRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38077023

RESUMO

Programmed DNA double-strand break (DSB) formation is a unique meiotic feature that initiates recombination-mediated linking of homologous chromosomes, thereby enabling chromosome number halving in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We discovered in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms, which are based on a DBF4-dependent kinase (DDK)-modulated interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.

3.
Nucleic Acids Res ; 50(10): 5617-5634, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35580048

RESUMO

Generation of haploid gametes depends on a modified version of homologous recombination in meiosis. Meiotic recombination is initiated by single-stranded DNA (ssDNA) ends originating from programmed DNA double-stranded breaks (DSBs) that are generated by the topoisomerase-related SPO11 enzyme. Meiotic recombination involves chromosomal synapsis, which enhances recombination-mediated DSB repair, and thus, crucially contributes to genome maintenance in meiocytes. Synapsis defects induce oocyte apoptosis ostensibly due to unrepaired DSBs that persist in asynaptic chromosomes. In mice, SPO11-deficient oocytes feature asynapsis, apoptosis and, surprisingly, numerous foci of the ssDNA-binding recombinase RAD51, indicative of DSBs of unknown origin. Hence, asynapsis is suggested to trigger apoptosis due to inefficient DSB repair even in mutants that lack programmed DSBs. By directly detecting ssDNAs, we discovered that RAD51 is an unreliable marker for DSBs in oocytes. Further, SPO11-deficient oocytes have fewer persistent ssDNAs than wild-type oocytes. These observations suggest that oocyte quality is safeguarded in mammals by a synapsis surveillance mechanism that can operate without persistent ssDNAs.


Assuntos
Pareamento Cromossômico , Endodesoxirribonucleases , Oócitos , Animais , Apoptose , Proteínas de Ciclo Celular/metabolismo , DNA , Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Mamíferos/genética , Meiose , Camundongos , Oócitos/citologia , Oócitos/metabolismo , Reparo de DNA por Recombinação
4.
Nucleic Acids Res ; 49(5): 2609-2628, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33619545

RESUMO

In most taxa, halving of chromosome numbers during meiosis requires that homologous chromosomes (homologues) pair and form crossovers. Crossovers emerge from the recombination-mediated repair of programmed DNA double-strand breaks (DSBs). DSBs are generated by SPO11, whose activity requires auxiliary protein complexes, called pre-DSB recombinosomes. To elucidate the spatiotemporal control of the DSB machinery, we focused on an essential SPO11 auxiliary protein, IHO1, which serves as the main anchor for pre-DSB recombinosomes on chromosome cores, called axes. We discovered that DSBs restrict the DSB machinery by at least four distinct pathways in mice. Firstly, by activating the DNA damage response (DDR) kinase ATM, DSBs restrict pre-DSB recombinosome numbers without affecting IHO1. Secondly, in their vicinity, DSBs trigger IHO1 depletion mainly by another DDR kinase, ATR. Thirdly, DSBs enable homologue synapsis, which promotes the depletion of IHO1 and pre-DSB recombinosomes from synapsed axes. Finally, DSBs and three DDR kinases, ATM, ATR and PRKDC, enable stage-specific depletion of IHO1 from all axes. We hypothesize that these four negative feedback pathways protect genome integrity by ensuring that DSBs form without excess, are well-distributed, and are restricted to genomic locations and prophase stages where DSBs are functional for promoting homologue pairing and crossover formation.


Assuntos
Quebras de DNA de Cadeia Dupla , Meiose/genética , ATPases Associadas a Diversas Atividades Celulares/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/fisiologia , Pareamento Cromossômico , Retroalimentação Fisiológica , Gametogênese , Camundongos , Estágio Paquíteno , Cromossomos Sexuais , Transdução de Sinais
5.
Nat Commun ; 11(1): 3101, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32555348

RESUMO

Orderly chromosome segregation is enabled by crossovers between homologous chromosomes in the first meiotic division. Crossovers arise from recombination-mediated repair of programmed DNA double-strand breaks (DSBs). Multiple DSBs initiate recombination, and most are repaired without crossover formation, although one or more generate crossovers on each chromosome. Although the underlying mechanisms are ill-defined, the differentiation and maturation of crossover-specific recombination intermediates requires the cyclin-like CNTD1. Here, we identify PRR19 as a partner of CNTD1. We find that, like CNTD1, PRR19 is required for timely DSB repair and the formation of crossover-specific recombination complexes. PRR19 and CNTD1 co-localise at crossover sites, physically interact, and are interdependent for accumulation, indicating a PRR19-CNTD1 partnership in crossing over. Further, we show that CNTD1 interacts with a cyclin-dependent kinase, CDK2, which also accumulates in crossover-specific recombination complexes. Thus, the PRR19-CNTD1 complex may enable crossover differentiation by regulating CDK2.


Assuntos
Troca Genética/genética , Ciclinas/genética , Quebras de DNA de Cadeia Dupla , Meiose/genética , Animais , Cromossomos/genética , Quinase 2 Dependente de Ciclina/genética , Dano ao DNA/genética , Reparo do DNA/genética , Feminino , Recombinação Homóloga/genética , Masculino , Camundongos
6.
Mol Cell ; 74(5): 1069-1085.e11, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31000436

RESUMO

Orderly segregation of chromosomes during meiosis requires that crossovers form between homologous chromosomes by recombination. Programmed DNA double-strand breaks (DSBs) initiate meiotic recombination. We identify ANKRD31 as a key component of complexes of DSB-promoting proteins that assemble on meiotic chromosome axes. Genome-wide, ANKRD31 deficiency causes delayed recombination initiation. In addition, loss of ANKRD31 alters DSB distribution because of reduced selectivity for sites that normally attract DSBs. Strikingly, ANKRD31 deficiency also abolishes uniquely high rates of recombination that normally characterize pseudoautosomal regions (PARs) of X and Y chromosomes. Consequently, sex chromosomes do not form crossovers, leading to chromosome segregation failure in ANKRD31-deficient spermatocytes. These defects co-occur with a genome-wide delay in assembling DSB-promoting proteins on autosome axes and loss of a specialized PAR-axis domain that is highly enriched for DSB-promoting proteins in wild type. Thus, we propose a model for spatiotemporal patterning of recombination by ANKRD31-dependent control of axis-associated DSB-promoting proteins.


Assuntos
Proteínas de Transporte/genética , Quebras de DNA de Cadeia Dupla , Recombinação Homóloga/genética , Meiose/genética , Animais , Proteínas de Transporte/química , Segregação de Cromossomos/genética , Masculino , Camundongos , Regiões Pseudoautossômicas/genética , Espermatócitos/crescimento & desenvolvimento , Espermatócitos/metabolismo , Cromossomo X/genética , Cromossomo Y/genética
7.
Chromosoma ; 126(3): 399-415, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27165042

RESUMO

Meiosis is a critical phase in the life cycle of sexually reproducing organisms. Chromosome numbers are halved during meiosis, which requires meiosis-specific modification of chromosome behaviour. Furthermore, suppression of transposons is particularly important during meiosis to allow the transmission of undamaged genomic information between generations. Correspondingly, specialized genome defence mechanisms and nuclear structures characterize the germ line during meiosis. Survival of mammalian spermatocytes requires that the sex chromosomes form a distinct silenced chromatin domain, called the sex body. An enigmatic spherical DNA-negative structure, called the meiotic dense body, forms in association with the sex body. The dense body contains small non-coding RNAs including microRNAs and PIWI-associated RNAs. These observations gave rise to speculations that the dense body may be involved in sex body formation and or small non-coding RNA functions, e.g. the silencing of transposons. Nevertheless, the function of the dense body has remained mysterious because no protein essential for dense body formation has been reported yet. We discovered that the polycomb-related sex comb on midleg-like 1 (SCML1) is a meiosis-specific protein and is an essential component of the meiotic dense body. Despite abolished dense body formation, Scml1-deficient mice are fertile and proficient in sex body formation, transposon silencing and in timely progression through meiosis and gametogenesis. Thus, we conclude that dense body formation is not an essential component of the gametogenetic program in the mammalian germ line.


Assuntos
Gametogênese , Células Germinativas/citologia , Meiose , Camundongos/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Animais , Feminino , Fertilidade , Células Germinativas/metabolismo , Masculino , Camundongos/genética , Proteínas do Grupo Polycomb/genética
8.
Nat Cell Biol ; 18(11): 1208-1220, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27723721

RESUMO

DNA double-strand breaks (DSBs) are induced by SPO11 during meiosis to initiate recombination-mediated pairing and synapsis of homologous chromosomes. Germline genome integrity requires spatiotemporal control of DSB formation, which involves the proteinaceous chromosome axis along the core of each meiotic chromosome. In particular, a component of unsynapsed axes, HORMAD1, promotes DSB formation in unsynapsed regions where DSB formation must occur to ensure completion of synapsis. Despite its importance, the underlying mechanism has remained elusive. We identify CCDC36 as a direct interactor of HORMAD1 (IHO1) that is essential for DSB formation. Underpinning this function, IHO1 and conserved SPO11-auxiliary proteins MEI4 and REC114 assemble chromatin-bound recombinosomes that are predicted activators of DSB formation. HORMAD1 is needed for robust recruitment of IHO1 to unsynapsed axes and efficient formation and/or stabilization of these recombinosomes. Thus, we propose that HORMAD1-IHO1 interaction provides a mechanism for the selective promotion of DSB formation along unsynapsed chromosome axes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Complexo Sinaptonêmico/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Cromatina/genética , Replicação do DNA/genética , Endodesoxirribonucleases/metabolismo , Meiose , Camundongos Knockout , Proteínas Nucleares/metabolismo , Recombinação Genética/genética , Complexo Sinaptonêmico/genética
9.
Clin Chim Acta ; 429: 96-103, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24321734

RESUMO

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is characterized by complex genetics linked to DNA rearrangements in a polymorphic genomic region of tandemly repeated D4Z4 segments. A panel of FSHD biomarkers including contracted D4Z4 array repeat combined with the 4qA(159/161/168)PAS haplotype has been proposed as molecular signature for defining alleles causally related to FSHD. The aim of the present study was to develop a simple approach for FSHD molecular testing in order to extend studies related to the applicability of FSHD molecular signature in Greek population. METHODS AND RESULTS: The method comprises: (i) visual genotyping of the common 4qA and 10qA subtelomeric haplotypes by a multiplex assay in a dipstick format. (ii) Detection of 4qA161 haplotype in D4Z4 contracted alleles by tri-primer PCR. (iii) Detection of PAS SNP in PLAM region and G>C SNP in the first proximal D4Z4 unit by tri-primer PCR. The method was evaluated by analysing DNA from monoallelic sources representing common 4q and 10q haplotypes, samples from 3 FSHD families, 36 unrelated probands and 38 control individuals of Greek origin. CONCLUSIONS: The proposed method could be a very useful tool for FSHD testing making it more accessible to clinical diagnostic laboratories and the wider FSHD community.


Assuntos
Técnicas de Diagnóstico Molecular/métodos , Distrofia Muscular Facioescapuloumeral/diagnóstico , Distrofia Muscular Facioescapuloumeral/genética , Alelos , Sequência de Bases , Cromossomos Humanos Par 10/genética , Cromossomos Humanos Par 4/genética , Eletroforese , Genoma Humano/genética , Haplótipos , Humanos , Reação em Cadeia da Polimerase , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Ribonucleico/genética
10.
Anal Chim Acta ; 727: 61-6, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22541824

RESUMO

For definitive diagnosis of thalassemia carriers and patients, as well as for prenatal diagnosis, genotype analysis is of fundamental importance. We report a dry-reagent, lateral flow dipstick test that enables visual genotyping (detection by naked eye) of 15 mutations common in Mediterranean populations in the beta-globin gene (HBB). The method comprises 3 simple steps: (i) PCR amplification of a single 1896 bp segment of the beta globin gene flanking all 15 mutations; (ii) a multiplex (10-plex and/or 30-plex) primer extension reaction of the unpurified amplification product using allele-specific primers. Biotin is incorporated in the extended product; (iii) a dry-reagent multi-allele (10-plex) dipstick assay for visual detection of the primer extension reaction products within minutes. The total time required for PCR, primer extension reaction and the dipstick assay is ~2 h. The method was evaluated by genotyping 45 DNA samples of known genotypes and 54 blind samples. The results were fully concordant with reference methods. The method is simple, rapid, and cost-effective. Detection by the dipstick assay does not require specialized instrumentation or highly qualified personnel. The proposed method could be a particularly useful tool in laboratories with limited resources and a basis for point-of-care diagnostics especially in combination with PCR amplification from whole blood.


Assuntos
Análise Mutacional de DNA/instrumentação , Análise Mutacional de DNA/métodos , Globinas/genética , Mutação/genética , Genótipo , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Reação em Cadeia da Polimerase , Talassemia beta/diagnóstico , Talassemia beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...